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Abstract

An analytical method leading to the solution of transient temperature filed in multi-dimensional composite circular
cylinder is presented. The boundary condition is described as time-dependent temperature change. For such heat con-
duction problem, nearly all the published works need numerical schemes in computing eigenvalues or residues. In this
paper, the proposed method involves no such numerical work. Application of �separation of variables� is novel. The
developed method represents an extension of the analytical approach derived for solving heat conduction in composite
slab in Cartesian coordinates. Close-formed solution is provided and its agreement with numerical result is good which
demonstrates a good accuracy of the developed solution form.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite cylindrical shells are broadly used in con-
temporary, nuclear, aerospace, water resources and
many other industries. Classical heat conduction in shell
structures is obviously very important in studying their
thermal load and deformation. There exist a great
amount of numerical programs for evaluating heat con-
duction performances in such structures. Nevertheless,
there are indeed many good reasons for deriving analyt-
ical solutions such as validating numerical models and
analysing basic physical processes.
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Theoretically, analytical methods in cylindrical
geometry are completely analogous to those applied to
Cartesian coordinates. In most analytical studies, one-
dimensional geometry is widely investigated. The diffi-
culties in multi-dimensional cases are much more pro-
found. Commonly applied techniques are finite integral
transform which is often employed to single layer mate-
rial, Green function, orthogonal expansion and Laplace
transform [1]. In Cartesian coordinates, examples of
application of these techniques are Salt [2,3], Mikhailov
and Özisik [4] (orthogonal expansion technique) as well
as Haji-Sheikh and Beck [5] (Green function). In cylin-
drical coordinates, example works are Abdul Azeez
and Vakakis [6] (integral transform) and Milosevic and
Raynaud [7]. Numerical iterations on searching eigen-
values were needed in all of the above-cited papers.
For multi-dimensional problems, associated eigenvalues
ed.
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Nomenclature

b resultant coefficient when applying �separa-
tion of variables�

F, G functions defined in Eq. (3.15a)
h intermediate variable defined in Eq. (3.13)
j composite layer identifier
k diffusivity
l layer thickness for circular cylinder
m index number
n layer number
q intermediate variable defined in Eq. (3.13)
R constructed new variable defined in Eq.

(3.11)
r space coordinate
t time

T temperature
U homogenised temperature = T � T1
u, X variable-separated temperatures U = uX

x space coordinate

Greek symbols

a convective and radiative heat transfer coeffi-
cient

g intermediate variable defined in Eq. (3.13)
u phase
k thermal conductivity
x period
n intermediate variable defined in Eq. (3.13)
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may become imaginary which produce instability to the
numerical iteration [5]. Such numerical instability occurs
in applying the technique of Laplace transform also,
as calculations often yield residue computation on
numerically searching for the roots of hyperbolic equa-
tions [8].

In conclusion, eigenvalue and residue computations
have always posed challenge to analytical methods on
solving heat conduction in composite structures. Re-
cently, a novel analytical method was developed to
tackle transient heat problems for one-dimensional and
multi-dimensional composite slab in Cartesian coordi-
nates subject to time-dependent temperature changes
[8,9]. It is free of numerical calculation. The objective
of this paper is to extend the method to tackling multi-
dimensional heat conduction in composite cylindrical
shells. As calculation methods and results exhibit differ-
ently for varied types of cylindrical geometry, composite
circular cylinder is considered here.
Fig. 1. Schematic of the composite circular cylinder.
2. Mathematical model

2.1. Model equations

Let n-layer composite circular cylinder be in cylindri-
cal form in x- and r-directions as illustrated in Fig. 1.
The layers are in r-direction and formed with different
materials characterised by constant conductivity, diffu-
sivity and thickness which are presented as kj, kj and lj,
j = 1, . . . ,n. An ideal contact between layers is assumed.

Denote r0 = l0 and rj = l0 + � � � + lj, j = 1, . . . ,n. So
the layer boundaries in r-direction are r0, r1, � � � , rn. The
basic heat conduction equation in terms of temperature
Tj(t, r,x) in the cylindrical coordinates becomes
kj
o2T j

or2
þ 1

r
oT j

or

� �
þ kj

o2T j

ox2
¼ oT j

ot
;

r 2 ½rj�1; rj�; x 2 ½0; 1�; j ¼ 1; . . . ; n ð2:1aÞ

with boundary conditions

� k1
oT 1

or
ðt; r0; xÞ ¼ �aþðT 1ðt; r0; xÞ � TþðtÞÞ;

x 2 ½0; 1� ð2:1bÞ
T jðt; rj; xÞ ¼ T jþ1ðt; rj; xÞ;
x 2 ½0; 1�; j ¼ 1; . . . ; n� 1 ð2:1cÞ
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� kj
oT j

or
ðt; rj; xÞ ¼ �kjþ1

oT jþ1

or
ðt; rj; xÞ;

x 2 ½0; 1�; j ¼ 1; . . . ; n� 1 ð2:1dÞ

� kn
oT n

or
ðt; rn; xÞ ¼ �a1ðT1ðtÞ � T nðt; rn; xÞÞ; ð2:1eÞ

� kj
oT j

ox
ðt; r; 0Þ ¼ �a0ðT jðt; r; 0Þ � T1ðtÞÞ;

r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð2:1fÞ

� kj
oT n

ox
ðt; r; 1Þ ¼ �a1ðT1ðtÞ � T jðt; r; 1ÞÞ;

r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð2:1gÞ
T jð0; r; xÞ ¼ 0;

r 2 ½rj�1; rj�; x 2 ½0; 1�; j ¼ 1; . . . ; n ð2:1hÞ
Here, without losing generality, it is assumed that the
composite thickness in x-direction is 1, the initial tem-
perature is zero and the surface heat transfer coefficients
for ambient boundaries are a+, a1, a0 and a1. Boundary
temperatures are given as time-dependent T+(t) and
T1(t) (see Fig. 1).

2.2. Further statement of the problem

For simplicity, we firstly assume simple boundary
temperatures as TþðtÞ ¼ cosðxþt þ uþÞ, T1ðtÞ ¼
cosðx1t þ u1Þ. Furthermore, for calculational conve-
nience, solution will be given according to the complex
form of the boundary temperature, namely

TþðtÞ ¼ eixþ tþiuþ ð2:2aÞ
T1ðtÞ ¼ eix1 tþiu1 ð2:2bÞ

Clearly, the equation solution is the real part of the
sought-after solution. If there is no danger of confusion
we shall keep the same notations for the complex form
of the boundary temperatures. More general time-
dependent boundaries will be discussed later.

In general study contexts, it has been agreed that the
boundary condition of the third kind can produce math-
ematical incompatibilities in the direction parallel to the
layers (e.g. [4] and [8]). Hence, only the first and the sec-
ond kind boundaries in r-direction are considered: a0
and a1 take the values of 0 or 1 (first and second kinds),
which leads to four boundary conditions in r-direction,
namely

x-boundary-1 : a0 ¼ 1; a1 ¼ 1 ð2:3aÞ
x-boundary-2 : a0 ¼ 1; a1 ¼ 0 ð2:3bÞ
x-boundary-3 : a0 ¼ 0; a1 ¼ 0 ð2:3cÞ
x-boundary-4 : a0 ¼ 0; a1 ¼ 1 ð2:3dÞ

Cases with x-boundary-2 and x-boundary-4 are the
same mathematically. With x-boundary-3, the solution
can be approximated as one-dimensional solution in
r-direction which has been studied earlier. There-
fore, we shall only consider two boundary conditions:
x-boundary-1 and x-boundary-2. And closed form solu-
tions will be provided.
3. Solution method

3.1. Homogenising the equations

With x-boundary-1: a0 =1, a1 =1, boundary con-
ditions in Eqs. (2.1f–g) are

T jðt; r; 0Þ ¼ T1ðtÞ; r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð3:1aÞ
T jðt; r; 1Þ ¼ T1ðtÞ; r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð3:1bÞ

For any jth layer, we introduce the following
new variable in order to homogenise some of the
boundaries

Uj ¼ T j � T1ðtÞ ð3:2Þ

This leads to the following equation for Eq. (2.1)

kj
o2Uj

or2
þ 1

r
oUj

or

� �
þ kj

o2Uj

ox2
¼ oUj

ot
þ T 0

1ðtÞ;

r 2 ½rj�1; rj�; x 2 ½0; 1�; j ¼ 1; . . . ; n ð3:3aÞ

with boundaries

� k1
oU 1

or
ðt; r0; xÞ ¼ �aþðU 1ðt; r0; xÞ þ T1ðtÞ � TþðtÞÞ;

x 2 ½0; 1� ð3:3bÞ
Ujðt; rj; xÞ ¼ Ujþ1ðt; rj; xÞ;
x 2 ½0; 1�; j ¼ 1; . . . ; n� 1 ð3:3cÞ

� kj
oUj

or
ðt; rj; xÞ ¼ �kjþ1

oUjþ1

or
ðt; rj; xÞ;

x 2 ½0; 1�; j ¼ 1; . . . ; n� 1 ð3:3dÞ

� kn
oUn

or
ðt; rn; xÞ ¼ a1Unðt; rn; xÞ; x 2 ½0; 1� ð3:3eÞ

Ujðt; r; 0Þ ¼ 0; r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð3:3fÞ
Ujðt; r; 1Þ ¼ 0; r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð3:3gÞ
Ujð0; r; xÞ ¼ �T1ð0Þ;
r 2 ½rj�1; rj�; x 2 ½0; 1�; j ¼ 1; . . . ; n ð3:3hÞ
3.2. Separating the variables

Traditionally, the application of �separation of vari-
ables� needs that the equations be linear and homoge-
neous. Unfortunately, this is not true in our targeted
equations. Therefore, we adopted a novel technique
which is different from those commonly reported papers
[8].

Assume �separation of variables� can be used as

Ujðt; r; xÞ ¼ ujðt; rÞX jðxÞ ð3:4Þ
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where Xj(x) is a variable-separated function which satis-
fies the homogeneous form of Eq. (3.3a). Then by substi-
tuting Xj(x) into Eq. (3.3a) results in

function of t and r ¼
kjX 00

j

X j
ð3:5Þ

Setting each side of the above equation equal �l2
j

gives

X 00
j þ

l2
j

kj
X j ¼ 0 ð3:6aÞ

The general solution of (3.6a) is then obtained as

X jm ¼ Ajm sin
ljmffiffiffiffi
kj

p x

 !
ð3:6bÞ

Combining the boundaries (3.3f–g), Xjm(0) = 0 and
Xjm(1) = 0, leads to

ljmffiffiffiffi
kj

p ¼ mp or ljm ¼ mp
ffiffiffiffi
kj

p
and

X jmðxÞ ¼ XmðxÞ ¼ sinðmpxÞ; m ¼ 1; . . . ;1 ð3:7Þ

Solution Uj in Eq. (3.4) can then be expressed as

Ujðt; r; xÞ ¼
X1
m¼1

ujmðt; rÞXmðxÞ

¼
X1
m¼1

ujmðt; rÞ sinðmpxÞ ð3:8Þ

Note that the coefficient Ajm in Eq. (3.6b) is embedded in
ujm in Eq. (3.8).
3.3. Resultant one-dimensional heat equation in t and x

variables

We shall omit writing m = 1, . . . ,1, j = 1, . . . ,n etc. if
it cannot cause confusion. Note that XmðxÞ ¼ sinðmpxÞ
are orthogonal functions. Representing 1 as a sum of
Xm(x) and combining Eq. (3.8), Eq. (3.3a) is then re-
written as

kj
X1
m¼1

o2ujm
or2

Xm þ 1

r

X1
m¼1

oujm
or

Xm

 !
�
X1
m¼1

l2
jmujmXm

¼
X1
m¼1

oujm
ot

X m þ T 0
1ðtÞ

X1
m¼1

bmXm ð3:9aÞ

where

bm ¼ 2ð1� cosðmpÞÞ
mp

ð3:9bÞ

Similarly, the same trick can be applied to the boundary
conditions (3.3b–h). Finally, we get to the following
equation system:
kj
o2ujm
or2

þ 1

r
oujm
or

� �
� l2

jmujm ¼ oujm
ot

þ bmT 0
1ðtÞ

r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð3:10aÞ

with boundaries

� k1
ou1m
or

ðt; r0Þ ¼ �aþðu1mðt; r0Þ þ bmT1ðtÞ � bmTþðtÞÞ

ð3:10bÞ
ujmðt; rjÞ ¼ uðjþ1Þmðt; rjÞ; j ¼ 1; . . . ; n� 1 ð3:10cÞ

� kj
oujm
or

ðt; rjÞ ¼ �kjþ1

ouðjþ1Þm

or
ðt; rjÞ j ¼ 1; . . . ; n� 1

ð3:10dÞ

� kn
ounm
or

ðt; rnÞ ¼ a1unmðt; rnÞ ð3:10eÞ

ujmð0; rÞ ¼ �bmT1ð0Þ r 2 ½rj�1; rj�;
j ¼ 1; . . . ; n ð3:10fÞ

Note that Eq. (3.10f) is obtained by expressing 1 as a
sum of Xm in Eq. (3.3h). It can be observed that the de-
rived one-dimensional transient heat equation for r-var-
iable exhibits quite different mathematical form than the
original multi-dimensional equation does.

3.4. Closed form solution

For any jth layer, we introduce the following new
variable as

Rjm ¼ ujm þ ix1bm
l2
jm þ ix1

T1ðtÞ þ
l2
jmbm

l2
jm þ ix1

e�l2jmtþiu

ð3:11Þ

Eq. (3.10a) is then homogenised as

kj
o
2Rjm

or2
þ 1

r
oRjm

or

� �
� l2

jmRjm ¼ oRjm

ot
ð3:12aÞ

with boundaries

� k1
oR1m

or
ðt; r0Þ ¼ �aþðR1mðt; r0Þ � RþmðtÞÞ ð3:12bÞ

Rjmðt; rjÞ ¼ Rðjþ1Þmðt; rjÞ; j ¼ 1; . . . ; n� 1 ð3:12cÞ

� kj
oRjm

or
ðt; rjÞ ¼ �kjþ1

oRðjþ1Þm

or
ðt; rjÞ;

j ¼ 1; . . . ; n� 1 ð3:12dÞ

� kn
oRnm

or
ðt; rnÞ ¼ �a1ðR�mðtÞ � Rnmðt; rnÞÞ ð3:12eÞ

ujmð0; rÞ ¼ 0; ð3:12fÞ

where

TþðtÞ ¼ eixþ tþiuþ ð3:12gÞ
T1ðtÞ ¼ eix1 tþiu1 ð3:12hÞ
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RþmðtÞ ¼ � l2
1mbm

l2
1m þ ix1

T1ðtÞ

þ l2
1mbm

l2
1m þ ix1

e�l2
1mtþiu þ bmTþðtÞ ð3:12iÞ

R�mðtÞ ¼
ixbm

l2
nm þ ix1

T1ðtÞ þ l2
nmbm

l2
nm þ ix1

e�l2nmtþiu ð3:12jÞ

Eq. (3.12) presents a similar system of transient one-
dimensional heat equation in composite hollow cylinder
which has been studied by authors as an extension of [9],
where R+m(t) and R�m(t) represented boundary temper-
atures and the convective term �l2

jmRjm was missing.
However, application of Laplace transform on equation
will result in exactly same type of ordinary equation.
Hence, without showing the details, we give the closed
form solution for Rjm as following:

For jth layer, denote

RjmðsÞ ¼
Z 1

0

e�ssRjmðsÞds;

qj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ l2

jm

kj

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ m2p2

p
;

h0 ¼
aþ
k1q1

; hj ¼
kjþ1

kj

ffiffiffiffiffiffiffiffi
kj
kjþ1

s
; j ¼ 1; . . . ; n� 1; ð3:13Þ

hn ¼ � a1
knqn

; gj ¼ qjrj�1;

nj ¼ qjrj; j ¼ 1; . . . ; n
DðsÞ¼

I1ðg1Þ�h0I0ðg1Þ �K1ðg1Þ�h0K0ðg1Þ 0 0 . . . 0 0 0 0
I0ðn1Þ K0ðn1Þ �I0ðg2Þ �K0ðg2Þ . . . 0 0 0 0
I1ðn1Þ �K1ðn1Þ �h1I1ðg2Þ h1K1ðg2Þ . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . I0ðnn�1Þ K0ðnn�1Þ �I0ðgnÞ �K0ðgnÞ
0 0 0 0 . . . I1ðnn�1Þ �K1ðnn�1Þ �hn�1I1ðgnÞ hn�1K1ðgnÞ
0 0 0 0 . . . 0 0 I1ðnnÞ�hnI0ðnnÞ �K1ðnnÞ�hnK0ðnnÞ

��������������

��������������
ð3:14aÞ
D1ðsÞ ¼ �h0

DðsÞ with
row� 1 column� 2j� 1
deleted

������
������

DðsÞ ;

D2ðsÞ ¼ hn

DðsÞ with
row� 2n column� 2j� 1
deleted

������
������

DðsÞ

ð3:14bÞ

D3ðsÞ ¼ h0

DðsÞ with
row� 1 column� 2j
deleted

������
������

DðsÞ ;

D4ðsÞ ¼ �hn

DðsÞ with
row� 2n column� 2j
deleted

������
������

DðsÞ

ð3:14cÞ
F mðs; rÞ ¼ ½D1IoðqjrÞ þ D3KoðqjrÞ�;
Gmðs; rÞ ¼ ½D2IoðqjrÞ þ D4KoðqjrÞ�

ð3:15aÞ

Rjm ¼ real � l2
1mbm

l2
1m þ ix1

F mðix1; rÞT1ðtÞ
�

þ l2
1mbm

l2
1m þ ix1

F mð�l2
1m; rÞe�l2

1mtþiu

þ bmF mðixþ; rÞTþðtÞ þ
ixbm

l2
nm þ ix1

Gmðix1; rÞT1ðtÞ

þ l2
nmbm

l2
nm þ ix1

Gmð�l2
nm; rÞe�l2nmtþiu

�
ð3:15bÞ

where real represents the real part of the function.The
combination of Eqs. (3.2), (3.8), (3.11) and (3.15b) gives
the final closed form solution as

T j ¼ real
X1
m¼1

Rjm�
ix1bm

l2
jmþ ix1

T1ðtÞ�
l2
jmbm

l2
jmþ ix1

e�l2jmtþiu

 !"

� sinðmpxÞþT1ðtÞ
#

ð3:16Þ

where Rjm is given in Eq. (3.15b).
3.5. Solution to the second x-boundary condition

The second x-boundary condition requires that
a0 =1, a1 = 0. Then the boundary condition (2.1f–g)
becomes (see equations)

T jðt; r; 0Þ ¼ T1ðtÞ; r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð3:17aÞ
oT j

ox
ðt; r; 1Þ ¼ 0; r 2 ½rj�1; rj�; j ¼ 1; . . . ; n ð3:17bÞ

Eq. (3.3) keeps the same except (3.3g) which becomes

oUj

ox
ðt; r; 1Þ ¼ 0 ð3:18Þ

Separating variables results in Eqs. (3.5) and (3.6).
Boundary condition (3.17a–b) requires that Xj(0) = 0
and

oXj

ox ð1Þ ¼ 0. Therefore, Eq. (3.7) is changed as



Fig. 2. Schematic picture of the five-layer circular cylinder
calculated in the example.

Table 1
Material properties and dimensions of the five-layer circular
cylinder

Layer Thermal
conductivity
(W/m/K)

Thermal
diffusivity
(m2/s)

Thickness
(mm)

1 0.23 4.11 · 10�7 50
2 0.0337 1.47 · 10�6 100
3 0.9 3.75 · 10�7 100
4 0.147 1.61 · 10�7 200
5 0.12 1.5 · 10�7 20

Table 2
Parameters of Eq. (4.1)

x1 x2 x3 x4
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ljffiffiffiffi
kj

p ¼ mþ 1

2

� �
p or ljm ¼ mþ 1

2

� �
p
ffiffiffiffi
kj

p
and

X jmðxÞ ¼ XmðxÞ ¼ sin mþ 1

2

� �
px

� �
; m ¼ 1; . . . ;1

ð3:19Þ

Using the orthogonal property of Xm to express 1 as a
sum of Xm, we get exactly the same heat conduction
equation as Eq. (3.9) except that ljm and bm are given
in Eq. (3.19) and the following, respectively:

bm ¼
2ð1� cosðmpþ p

2
ÞÞ

ð2mþ 1Þp ; m ¼ 1; . . . ;1 ð3:20Þ

The solution procedure follows exactly the same meth-
odology developed for the first x-boundary condition.

3.6. Solution to more generally time-dependent

boundary condition

For more generally time-dependent boundary condi-
tions, present the boundaries as Fourier series as
TþðtÞ ¼ aþ0 þ

P1
k¼1aþk cosðxþkt þ uþkÞ, T1ðtÞ ¼ a10 þP1

k¼1a1k cosðx1kt þ u1kÞ. By linear property, the corre-
sponding solution can be expressed as the sum of solu-
tions with constant boundary temperatures and with
infinitely sums of cosines. Solution to the constant
boundary temperature is approximated by linearisation
of hyperbolic functions sinh and cosh in F, G in Eq.
(3.15a) to obtain RjmðsÞ � const

const1�sþconst2
. Hence

RjmðtÞ ¼ const
const1

expð� const2
const1

tÞ. If studies do not focus very
much on the initial temperature change, the steady state
solution may also be a good approximation to the con-
stant boundary temperature. The solution to infinitely
sums of cosines is easily obtained from the previous the-
ory due to the linear property.
30.0 5.0 2.0 1.0
u+1 u+2 u+3 u+4

5.149231 16.77994 �0.67884 4.381328
a+0 a+1 a+2 a+3 a+4
17.0 1.919486 0.732953 �0.25824 0.132831

u11 u12 u13 u14

5.607506 13.59596 1.451539 5.418717
a10 a11 a12 a13 a14

5.0 2.72217 �5.019664 1.084058 0.4648
4. Calculation example

A five-layer composite circular cylinder was selected
as the calculation example demonstrated in Fig. 2. Ther-
mal properties and dimensions of the slab are given in
Table 1. Surface heat transfer coefficients were set as
a1 = 25 W/m2/K and a+ = 6 W/m2/K.

The boundary temperatures were taken from mea-
surements and fitted with periodic functions with peri-
ods 30, 5, 2 and 1 days as

TþðtÞ ¼ aþ0 þ
X4
i¼1

aþi cos
2pt
xi

� uþi

� �
ð4:1aÞ

T1ðtÞ ¼ a10 þ
X4
i¼1

a1i cos
2pt
xi

� u1i

� �
ð4:1bÞ

where fitting parameters are listed in Table 2 and Fig. 3
shows the values.
Calculated points were made in the central points of
each layer (e.g. represented as layer 3 to layer 4 in the
figure). Fig. 4 displays the comparison of the transient
temperature variation using the analytical and numerical
methods. The temperatures were stored in files as hourly
values and shown in figures as hourly and daily values.
In the figure, boundary conditions are presented as
T+(t) � T1(t) (represented as T+ � Tinf in the figure)
for convenience. The corresponding temperatures in lay-



Fig. 3. Time-dependent boundary condition.

Fig. 4. Comparison of analytical and numerical results, layers three and four.
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ers are plotted as Tj(t) � T1(t). It can be seen that the
numerical agrees with analytical results. The results for
the first two days are provided in Fig. 5. More calcula-
tion results in other layers did not show any substantial
change. Therefore, we only illustrate the results in layer
three and four.
5. Discussions

The solution of transient multi-dimensional heat con-
duction of n-layer circular cylinder is explicitly expressed
through Eq. (3.16). We make some observations.
• Calculation includes only simple computation of
matrix determinant which can be easily accomplished
by commercial mathematical packages like Maple,
Matlab and Mathematica and even by hands. No
numerical work is necessitated. For any jth layer,
only five sparse matrices are involved. The calcula-
tion load is small and the computing time is short.

• Compared with numerical methods, the developed
method is easier to complement and a possible insta-
bility in numerical method is avoided. This is espe-
cially important for multi-dimensional heat
conduction problem as imaginary eigenvalues may
exist which cause instability of the numerical program.



Fig. 5. Comparison of analytical and numerical results, layer three.
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• It is known that any periodic and piecewise continuous
function can be approximated as its Fourier expan-
sion. Hence, time-dependent boundary temperature
can be approximated by Fourier series. Therefore,
boundary conditions are not restricted to periodic
ones as demonstrated in the calculation example.

• It is only for the demonstration sake that the assump-
tions of constant conductivity axially and radially in
each layer and perfect contact between layers are pre-
sumed. However, observing the analytical technique
we developed, these two restrictions can be easily
taken away without adding contents in the paper.
6. Conclusions

In this paper, an analytical approach to multi-dimen-
sional heat conduction in composite circular cylinder sub-
ject to generally time-dependent temperature changes has
been presented. Boundary temperatures were approxi-
mated as Fourier series. Laplace transform was adopted
in deducing the solutions. The solution was approximated
without evaluating the residues. The application of �sepa-
ration of variables� was novel in multi-dimensional case
which led to an almost same amount of calculation load
as in one-dimensional problem. An n-layer closed form
solution is provided which is lacking in literatures. The
method is shown to have considerable potential in solving
heat conduction equation. These conclusions have also
been demonstrated in solvingmulti-dimensional heat con-
duction in composite cylinder in our companion paper.
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