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Abstract

An analytical method leading to the solution of transient temperature filed in multi-dimensional composite circular
cylinder is presented. The boundary condition is described as time-dependent temperature change. For such heat con-
duction problem, nearly all the published works need numerical schemes in computing eigenvalues or residues. In this
paper, the proposed method involves no such numerical work. Application of ‘separation of variables’ is novel. The
developed method represents an extension of the analytical approach derived for solving heat conduction in composite
slab in Cartesian coordinates. Close-formed solution is provided and its agreement with numerical result is good which

demonstrates a good accuracy of the developed solution form.
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1. Introduction

Composite cylindrical shells are broadly used in con-
temporary, nuclear, aerospace, water resources and
many other industries. Classical heat conduction in shell
structures is obviously very important in studying their
thermal load and deformation. There exist a great
amount of numerical programs for evaluating heat con-
duction performances in such structures. Nevertheless,
there are indeed many good reasons for deriving analyt-
ical solutions such as validating numerical models and
analysing basic physical processes.

* Corresponding author. Tel.: +358 9 4515305; fax: +358 9
4513724.
E-mail address: xiaoshu@cc.hut.fi (X. Lu).

Theoretically, analytical methods in cylindrical
geometry are completely analogous to those applied to
Cartesian coordinates. In most analytical studies, one-
dimensional geometry is widely investigated. The diffi-
culties in multi-dimensional cases are much more pro-
found. Commonly applied techniques are finite integral
transform which is often employed to single layer mate-
rial, Green function, orthogonal expansion and Laplace
transform [1]. In Cartesian coordinates, examples of
application of these techniques are Salt [2,3], Mikhailov
and Ozisik [4] (orthogonal expansion technique) as well
as Haji-Sheikh and Beck [5] (Green function). In cylin-
drical coordinates, example works are Abdul Azeez
and Vakakis [6] (integral transform) and Milosevic and
Raynaud [7]. Numerical iterations on searching eigen-
values were needed in all of the above-cited papers.
For multi-dimensional problems, associated eigenvalues
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Nomenclature

b resultant coefficient when applying ‘separa-
tion of variables’

functions defined in Eq. (3.15a)
intermediate variable defined in Eq. (3.13)
composite layer identifier

diffusivity

layer thickness for circular cylinder

index number

layer number

intermediate variable defined in Eq. (3.13)
constructed new variable defined in Eq.
(3.11)

space coordinate

time

Q

~ =

T temperature

U homogenised temperature =7 — T,

u, X variable-separated temperatures U = uX
X space coordinate

Greek symbols

o convective and radiative heat transfer coeffi-
cient

intermediate variable defined in Eq. (3.13)
phase

thermal conductivity

period

intermediate variable defined in Eq. (3.13)

~me e =

may become imaginary which produce instability to the
numerical iteration [5]. Such numerical instability occurs
in applying the technique of Laplace transform also,
as calculations often yield residue computation on
numerically searching for the roots of hyperbolic equa-
tions [8].

In conclusion, eigenvalue and residue computations
have always posed challenge to analytical methods on
solving heat conduction in composite structures. Re-
cently, a novel analytical method was developed to
tackle transient heat problems for one-dimensional and
multi-dimensional composite slab in Cartesian coordi-
nates subject to time-dependent temperature changes
[8,9]. It is free of numerical calculation. The objective
of this paper is to extend the method to tackling multi-
dimensional heat conduction in composite cylindrical
shells. As calculation methods and results exhibit differ-
ently for varied types of cylindrical geometry, composite
circular cylinder is considered here.

2. Mathematical model
2.1. Model equations

Let n-layer composite circular cylinder be in cylindri-
cal form in x- and r-directions as illustrated in Fig. 1.
The layers are in r-direction and formed with different
materials characterised by constant conductivity, diffu-
sivity and thickness which are presented as 4, k; and

j=1,...,n. An ideal contact between layers is assumed.
Denote ro=1y and rj)=10+---+1, j=1,...,n. So
the layer boundaries in r-direction are ro, ry,---,r, The

basic heat conduction equation in terms of temperature
T(t,r,x) in the cylindrical coordinates becomes

Tew

Tm

Fig. 1. Schematic of the composite circular cylinder.

o’T, 10T, o’T, o,
"f(arz +:E) thige =5
relrinrl, xe[0,1], j=1,...,n (2.1a)

with boundary conditions

oT,

— E(Iv ro,x) = =0t (T1(t,70,x) — T1.(2)),

x €[0,1] (2.1b)
T.f(tv r,,x) = T.Hl(tr K,,x),

xel0,1], j=1,...,n—1 (2.1¢)
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or; T,

_/’{j or (t Fj,Xx ): _}”j+1a—j},.(t7rj7x)7
xel0,1], j=1,...,n—1 (2.1d)
aTn
— » (t, 70, %) = =0 (Too(t) — Tu(t, 70y X)), (2.1e)
_ aaT (6,7,0) = —ao(T;(t,7,0) — T (1)),
re ), j=1,....n (2.1f)
oT,
ey St 1) =~ (T (1) = Ti(1,7, 1)),
rero,rl, j=1,...,n (2.1g)
Tj(O,I}X) :0>
relr, rl, xe€l0,1],j=1,...,n (2.1h)

Here, without losing generality, it is assumed that the
composite thickness in x-direction is 1, the initial tem-
perature is zero and the surface heat transfer coeflicients
for ambient boundaries are o, o, %y and o;, Boundary
temperatures are given as time-dependent 77.(¢) and
T..(?) (see Fig. 1).

2.2. Further statement of the problem

For simplicity, we firstly assume simple boundary
temperatures as T, (f) =cos(wpt+ @ ), Tu(t) =
cos(wut + ¢,,). Furthermore, for calculational conve-
nience, solution will be given according to the complex
form of the boundary temperature, namely

T+ ([) — ei“’+f+i‘/7+ (2221)
Too(f) = eloxition (2.2b)

Clearly, the equation solution is the real part of the
sought-after solution. If there is no danger of confusion
we shall keep the same notations for the complex form
of the boundary temperatures. More general time-
dependent boundaries will be discussed later.

In general study contexts, it has been agreed that the
boundary condition of the third kind can produce math-
ematical incompatibilities in the direction parallel to the
layers (e.g. [4] and [8]). Hence, only the first and the sec-
ond kind boundaries in r-direction are considered: o
and o take the values of 0 or oo (first and second kinds),
which leads to four boundary conditions in r-direction,
namely

x-boundary-1: oy =00, o =00 (2.3a)
x-boundary-2: «y=o00, o3 =0 (2.3b)
x-boundary-3: =0, o5 =0 (2.3¢)
x-boundary-4: oy =0, o3 =00 (2.3d)

Cases with x-boundary-2 and x-boundary-4 are the
same mathematically. With x-boundary-3, the solution
can be approximated as one-dimensional solution in
r-direction which has been studied earlier. There-
fore, we shall only consider two boundary conditions:

x-boundary-1 and x-boundary-2. And closed form solu-
tions will be provided.

3. Solution method

3.1. Homogenising the equations

With x-boundary-1: og = o0, o
ditions in Egs. (2.1f-g) are

= oo, boundary con-

Ti(t,r,0)=Tx(t), relra,rl, j=1,...,n (3.1a)

Ti(t,r,1)=Tx(t), relra,rl, j=1,...,n (3.1b)

For any jth layer, we introduce the following
new variable in order to homogenise some of the
boundaries

Up=T; = Tx(1) (3.2)
This leads to the following equation for Eq. (2.1)
o’U; 10U, o'U;  aU;,
k; ) R
(6r2+ ar)+’ax2 & T =)
relfrinrl, xe[0,1], j=1,...,n (3.3a)

with boundaries

oU,
— = or (t ro,x) = —oty (Ur (2,79, %) + Too(t) - T+(t))7
x €10,1] (3.3b)
U/([’rﬁx) = U/+1(t7rj7x)7
xel0,1], j=1,...,n—1 (3.3¢)
ouU; oU .
}j or (t i, X ) = —),jﬂa—‘:r(t,rj,x),
xel0,1], j=1,...,n—1 (3.3d)
;.n%(t, rox) = anUn(ty i), x€0,1]  (3.3¢)
U(t,r,0) =0, relr,rl, j=1,....n (3.3f)
Uj(t,r,1) =0, relra,rl, j=1,...,n (3.3g)
U;(0,r,x) = —T(0),
relfrinrl, xe[0,1], j=1,...,n (3.3h)

3.2. Separating the variables

Traditionally, the application of ‘separation of vari-
ables’ needs that the equations be linear and homoge-
neous. Unfortunately, this is not true in our targeted
equations. Therefore, we adopted a novel technique
which is different from those commonly reported papers
[8].

Assume ‘separation of variables’ can be used as

U;(t,r,x) = u(t,r)X;(x) (3.4)
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where X(x) is a variable-separated function which satis-
fies the homogeneous form of Eq. (3.3a). Then by substi-
tuting X(x) into Eq. (3.3a) results in

kX"
X

J

function of + and r=

(3.5)

Setting each side of the above equation equal —ujz.
gives

12
X' +2LX; =0 (3.6a)
J kj E

The general solution of (3.6a) is then obtained as

X = Ay sin [ 2225 (3.6b)
vk
Combining the boundaries (3.3f-g), Xj,,(0)=0 and
Xim(1) =0, leads to
L\/ZL =mn or u, =mn/k; and
J
Xjm(x) = X,(x) =sin(mnx), m=1,...,00 (3.7

Solution U; in Eq. (3.4) can then be expressed as

N

U(t,r,x) = Wi (8, 7)X 5 (x)

3
I

I
NgE

U (t, ) sin(mmx) (3.8)

3
I

Note that the coefficient 4, in Eq. (3.6b) is embedded in
u;, in Eq. (3.8).

3.3. Resultant one-dimensional heat equation in t and x
variables

We shall omit writingm =1,...,00,j=1,...,netc. if
it cannot cause confusion. Note that X, (x) = sin(mmnx)
are orthogonal functions. Representing 1 as a sum of
X,(x) and combining Eq. (3.8), Eq. (3.3a) is then re-
written as

(i jm m 4= Z au jm

m=1

) guﬁmuijm
fz W 4 T fj (3.92)

where

2(1 — cos(mn))

by = (3.9b)
Similarly, the same trick can be applied to the boundary
conditions (3.3b-h). Finally, we get to the following
equation system:

azujm 1 au/'m 5 61/{],” "
=L 2 my Ry, = T
kj( or? + r Oor ) Fijm®jm ot +buTc (1)

reflrnnl, j=1....n (3.10a)
with boundaries
- ©g1nl( t,70) = =0y (Ui (t,70) + by Too(t) — by T4 (1))
(3.10b)
Wi (1) = ugiom(t,ry), j=1,...,n—1 (3.10¢)

- }ujag—:n(t,rj) = —Aj41 au%:l)m (t,r;) j=1,...,n—1
(3.10d)
— Sy N (6, ) (3.10e)
S (67) = (8,7,
Uim(0,7) = =0, T (0) re€rjy,r,
j=1,....n (3.10f)

Note that Eq. (3.10f) is obtained by expressing 1 as a
sum of X, in Eq. (3.3h). It can be observed that the de-
rived one-dimensional transient heat equation for r-var-
iable exhibits quite different mathematical form than the
original multi-dimensional equation does.

3.4. Closed form solution

For any jth layer, we introduce the following new
variable as

i ‘bm mbm _
Ry =t + — " T (1) + ] ¢ Hnt o
i+ 00 Him + 0
(3.11)
Eq. (3.10a) is then homogenised as
*R,, 10R, OR,
ki oy ) 2R, = 12
( or? + r or ) FimXim ot (3.122)
with boundaries
R\
s al (t,r0) = — oty (Rim(t,70) — Rim(1)) (3.12b)
Ri(t,7;) = Rjjpim(t, ), j=1,...,n—1 (3.12¢)
aRm N OR; m
=% a; (t,r)) = — A (é:) (t.77),
j=1,...,n—1 (3.12d)
aan
- Ana—(t7 ) = —0oo (R_p(£) — Rum(t, 7)) (3.12¢)
r
u;m(0,7) =0, (3.12f)
where
T+(l‘) — ei"’+’+i</’+ (312g)
T (t) = ex'tiox (3.12h)
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2
:ulmb’”
R m ) = 771—'& t
om0 Ky + 0 Y
2 b .
Im e
iwb HiuD ot H j
Rop(l) = 2 T (1) + —-mor e Hant i (3,12
( ) :ugnl + 10 ( ) * M%m + 10 ) ( J)

Eq. (3.12) presents a similar system of transient one-
dimensional heat equation in composite hollow cylinder
which has been studied by authors as an extension of [9],
where R4,,(?) and R_,,(¢) represented boundary temper-
atures and the convective term —,ujz.mR/,,, was missing.
However, application of Laplace transform on equation
will result in exactly same type of ordinary equation.
Hence, without showing the details, we give the closed
form solution for Rj,, as following:

For jth layer, denote

RMQ:A Ry () de
S+ 143,
q,= o = /s + m?n2,

oy /l/'+1 k; .
= =, /— j=1,...,n—1, 3.13
' gy o\ ! G-13)
Oloo
n — j-nqn y N q;rj-1,
fj = qujv ] 17 ,n
Ii(m) —holo(m) —Ki(m)—hoKo(m) 0 0
1y(&) Ko(&1) —lo(n)  —Ko(n,)
I(&) —Ki(&) —m(ny) miKi(n,)
A(s) =
0 0 0 0
0 0 0 0
0 0 0 0
A(s) with
row — 1 column —2j—1
AGs) P deleted
18) = —ho )
Als) (3.14b)
A(s) with
row —2n column — 2 — 1
deleted
Az(S) = h,, A(s)
A(s) with
row — 1 column — 2j
deleted
Ag(S) = h() A(S) )
. (3.14¢)
A(s) with
row —2n column — 2j
deleted
Als) = =k AG)

Fouls,r) = [ALo(g;r) + AsK o (q;1)], (3.15a)
Guls,r) = [Azlo(qu) + A4K0(qu)]
.u%mb’"

R,, =real| ———2—
! ( 'u%m + 1000

Fo(io, )T oo (2)
lu%mbm

2 —1 t+ig
3 —— F (=1, r)e e
Him T 10

iwb,,

buF (e, ,r)T, (¢ —_
+ (i, 7) +()+H§m+1woo

G (1000, 7) T oo ()

2 b 5 .
b Gm(_ﬂiwr)e—umzw) (3.15b)

where real represents the real part of the function.The

combination of Egs. (3.2), (3.8), (3.11) and (3.15b) gives
the final closed form solution as

- iwsb 2 by ,
Tj =real g ij —— OC_ mn T ([) _ 2’uf"’ - e HintHio
tujm + 10 :ujm -+ 1o

m=1

x sin(mmx) + T () (3.16)
where R;,, is given in Eq. (3.15b).
0 0 0 0
0 0 0 0
0 0 0 0
1y(&o-1)  KolEom1) —1Io(n,) —Ko(1,)
N(&) —Ki(&mr)  —hili(n,) hy 1K1 (n,)

[l (én) 7hn10(én) 7K] (én) 7hnK0(§n)
(3.14a)

3.5. Solution to the second x-boundary condition

The second x-boundary condition requires that
oy = 00, o1 = 0. Then the boundary condition (2.1f-g)
becomes (see equations)

Tj(t7r70):Too(t)7 re[rjflvrjh j:17"'7n

oT;
a—xj(t,r,l) =0, refra,r), j=1,...,n

(3.17a)
(3.17b)

Eq. (3.3) keeps the same except (3.3g) which becomes

Z(t,r,1)=0 (3.18)

Ox

Separating variables results in Egs. (3.5) and (3.6).
Boundary condition (3.17a-b) requires that X;(0) =0
and %(l) = 0. Therefore, Eq. (3.7) is changed as
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Ui 1 1
e ol
and
. 1
Xm(x) = X,n(x) = sin ((m+§)nx), m=1,...,00

(3.19)

Using the orthogonal property of X, to express 1 as a
sum of X,,, we get exactly the same heat conduction
equation as Eq. (3.9) except that u,, and b,, are given
in Eq. (3.19) and the following, respectively:

2(1 — cos(mn + %))

bn = (2m+ )n ’

m=1,...,00 (3.20)
The solution procedure follows exactly the same meth-
odology developed for the first x-boundary condition.

3.6. Solution to more generally time-dependent
boundary condition

For more generally time-dependent boundary condi-
tions, present the boundaries as Fourier series as
T (t) = aw+ Y2 aucos(@ut + @), Too(t) = o+
> e ook COS(Waokt + @i ). By linear property, the corre-
sponding solution can be expressed as the sum of solu-
tions with constant boundary temperatures and with
infinitely sums of cosines. Solution to the constant
boundary temperature is approximated by linearisation
of hyperbolic functions sinh and cosh in F, G in Eq.
(3.15a) to obtain  Rj,(s) &~ Hence

constlxs+const2”

Ry (1) = 2L exp(— 1) If studies do not focus very
much on the initial temperature change, the steady state
solution may also be a good approximation to the con-
stant boundary temperature. The solution to infinitely
sums of cosines is easily obtained from the previous the-

ory due to the linear property.

4. Calculation example

A five-layer composite circular cylinder was selected
as the calculation example demonstrated in Fig. 2. Ther-
mal properties and dimensions of the slab are given in
Table 1. Surface heat transfer coefficients were set as
oo, =25 W/m?/K and oy = 6 W/m?/K.

The boundary temperatures were taken from mea-
surements and fitted with periodic functions with peri-
ods 30, 5, 2 and 1 days as

4 2nt
T (1) :a+0+z;a+,-cos (wi —go+,-) (4.1a)

i=

4
2
Toa(t) = axo + 3 i c08 ((;” - @w,.) (4.1b)

i=1
where fitting parameters are listed in Table 2 and Fig. 3
shows the values.

Tew

Q, 4, 5 from center

Fig. 2. Schematic picture of the five-layer circular cylinder
calculated in the example.

Table 1
Material properties and dimensions of the five-layer circular
cylinder

Layer Thermal Thermal Thickness
conductivity diffusivity (mm)
(W/m/K) (m?%/s)

1 0.23 411%x1077 50

2 0.0337 1.47x107¢ 100

3 0.9 3.75x 1077 100

4 0.147 1.61x1077 200

5 0.12 1.5%x 1077 20

Table 2

Parameters of Eq. (4.1)
w1 (0)) w3 4
30.0 5.0 2.0 1.0
P+1 P+2 P+3 P+4
5.149231 16.77994 —0.67884 4.381328

d+o a+ [2%) a3 (2%

17.0 1.919486 0.732953 —0.25824 0.132831
Pool P2 Poo3 Pocd
5.607506 13.59596 1.451539 5.418717

A0 Aol o2 o3 Asoa

5.0 2.72217 —5.019664 1.084058 0.4648

Calculated points were made in the central points of
each layer (e.g. represented as layer 3 to layer 4 in the
figure). Fig. 4 displays the comparison of the transient
temperature variation using the analytical and numerical
methods. The temperatures were stored in files as hourly
values and shown in figures as hourly and daily values.
In the figure, boundary conditions are presented as
T (t) — Too(t) (represented as Ty — Tiyr in the figure)
for convenience. The corresponding temperatures in lay-
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24

20

16

— — |

/ Tinr
8

~_

Temperature (°C)
-
N

Time (day)

Fig. 3. Time-dependent boundary condition.

e TN P 4
0
4
-8
0 2 4
20
16

. /N

AN

N

Temperature (°C)
-
)
\

o 1\ /
N

Time (day)

Fig. 4. Comparison of analytical and numerical results, layers three and four.

ers are plotted as T(f) — To(#). It can be seen that the
numerical agrees with analytical results. The results for
the first two days are provided in Fig. 5. More calcula-
tion results in other layers did not show any substantial
change. Therefore, we only illustrate the results in layer
three and four.

5. Discussions
The solution of transient multi-dimensional heat con-

duction of n-layer circular cylinder is explicitly expressed
through Eq. (3.16). We make some observations.

e Calculation includes only simple computation of

matrix determinant which can be easily accomplished
by commercial mathematical packages like Maple,
Matlab and Mathematica and even by hands. No
numerical work is necessitated. For any jth layer,
only five sparse matrices are involved. The calcula-
tion load is small and the computing time is short.

Compared with numerical methods, the developed
method is easier to complement and a possible insta-
bility in numerical method is avoided. This is espe-
cially important for multi-dimensional heat
conduction problem as imaginary eigenvalues may
exist which cause instability of the numerical program.
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16
12
~—] /

o 4 —— ]
T '\ m—
5
B 4
2 To=Tinr
E layer 3-analytical
- 0 layer 3-numerical

. \\_“g

]
-8
0 8 16 24 32 40 48

Time (hour)

Fig. 5. Comparison of analytical and numerical results, layer three.

o Itis known that any periodic and piecewise continuous
function can be approximated as its Fourier expan-
sion. Hence, time-dependent boundary temperature
can be approximated by Fourier series. Therefore,
boundary conditions are not restricted to periodic
ones as demonstrated in the calculation example.

It is only for the demonstration sake that the assump-
tions of constant conductivity axially and radially in
each layer and perfect contact between layers are pre-
sumed. However, observing the analytical technique
we developed, these two restrictions can be easily
taken away without adding contents in the paper.

6. Conclusions

In this paper, an analytical approach to multi-dimen-
sional heat conduction in composite circular cylinder sub-
ject to generally time-dependent temperature changes has
been presented. Boundary temperatures were approxi-
mated as Fourier series. Laplace transform was adopted
in deducing the solutions. The solution was approximated
without evaluating the residues. The application of ’sepa-
ration of variables’ was novel in multi-dimensional case
which led to an almost same amount of calculation load
as in one-dimensional problem. An n-layer closed form
solution is provided which is lacking in literatures. The
method is shown to have considerable potential in solving
heat conduction equation. These conclusions have also
been demonstrated in solving multi-dimensional heat con-
duction in composite cylinder in our companion paper.
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